什么叫圆形?
圆形,是一个看来简单,实际上是很奇妙的形状。 古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆. 以后到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。
圆形是一种几何图形,在一个平面内,围绕一个点并以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆是轴对称、中心对称图形,对称轴经过圆心。圆具有旋转不变性。圆的周长等于圆周率乘以两倍的圆半径或者是圆周率乘以直径,圆的面积等于圆周率乘以圆半径的平方。两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周的长都相等。
这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。
圆形是在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线。
圆形是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。
同时,圆又是“正无限多边形”,而“无限”只是一个概念。圆可以看成由无数个无限小的点组成的正多边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。(当直线成为曲线即为无限点,因此也可以说有绝对意义的圆。)
在同一平面内到定点的距离等于定长的点的***叫做圆。这个定点叫做圆的圆心。圆形一周的长度,就是圆的周长。能够重合的两个圆叫等圆,等圆有无数条对称轴。圆是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0。
2圆的性质
圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍
圆形是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
圆的各部分名称?
圆各部分名称:圆心:圆中心的一点叫圆心,用字母O表示;半径:圆心到圆上任意一点的线段叫半径,用字母r表示;
直径:通过圆心并且两端都在圆上的线段叫直径,用字母d表示;围成圆的一周的曲线的长叫周长,用字母C表示。
在中国古代,有没有人认为地球是圆的呢?
大家普遍认为,公元前6世纪,古希腊数学家毕达哥拉斯第一次提出地球是圆形的,古代中国一直都认为“天圆地方”。其实,中国古代早就有人提出地球是圆形这个概念了。
出生在公元前390年的战国哲学家,惠施。他很早就提出了一种哲学观点,说明地球是圆的。
这句话看似简单,实际上却很有深意。天下的中央,应该就是在中间啊,惠施却认为,“燕之北”是中央,“越之南”也是中央。也就是说,惠施认为天下的“中央”不是一定的,在任何地方都是天下的“中央”。这应该是中国最早的,地球圆形的***设吧。
之后的东汉天文学家张衡,就提出了“浑天说”。
张衡认为地球就像鸡蛋里的蛋黄一样,被天所包裹着,这种认识形象的说明了地球是圆形的。
但是古代中国人对地球的认识,最主流的还是“盖天说”。盖天说认为“天圆如张盖,地方如棋盘”,也就是天圆地方的理论。
再看看世界其他地区古代的主流说法。
古希腊和古罗马因为居住在地中海附近,他们认为大地就是一张巨大的盾牌,盾牌的中间有一片浅海,就是地中海。再往外,就是一圈高山,高山之外就全部是海洋了。